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Abstract— Phase-based 3D radio-frequency identification 

(RFID) tag localization has the advantage of high accuracy, but 

the inherent phase-range ambiguity needs to be resolved by either 

frequency or spatial diversity. We propose a reliable 3D tag 

localization method that exploits spatial diversity to achieve 

millimeter-precision inside building materials with heavy multi-

path interferences. We first obtain the functional relationship 

between differential phase and differential distance using 

polynomial fitting and optimization for reference tags and then 

evaluate the 3D positions of new tags given only phase 

measurements. A novel ambiguity-free algorithm is devised to 

identify the correct tag location from multiple candidates by 

leveraging redundant channel resources with spatial diversity. We 

prototyped the tag localization system on Universal Software 

Radio Peripheral (USRP) devices and harmonic backscatter RFID 

tags and demonstrated millimeter-level localization accuracy at 

1.8 GHz second-harmonic carrier frequency inside building 

materials.   

Keywords—harmonic backscatter, phase ambiguity, phase 

measurements, precision localization, radio-frequency identification 

(RFID) 

I. INTRODUCTION 

Radio-frequency identification (RFID) has mature 
applications in highway tolling [1], luggage tracking [2], and 
supply chain management [3]. Recently, RFID tag localization 
has emerged as one of the critical applications for the Internet of 
Things (IoT) and structural integrity monitoring. For example, 
passive tags can be buried inside the weight bearing structures 
as markers to track displacement and vibration [4]. Moreover, 
the channel phase measurements can also be applied to sensing 
tasks such as localization and mapping [5], [6], imaging [7], [8], 
and detection of vital signs [9], [10]. Compared with received 
signal strength indicator (RSSI), the phase methods are often 
more sensitive to range, enabling accurate localization [11]. 

However, phase measurements suffer from ambiguity issues 
which result in large localization errors if not handled properly. 
They can be resolved by exploiting either frequency or spatial 
diversity. For example, frequency diversity can be exploited by 
calculating time-of-flight (ToF) or time-difference-of-arrival 
(TDoA) using wideband signals, as in traditional ToF radar 
systems [12]. In addition, a heuristic method [5] can remove 
phase ambiguity due to cyclic wavelength and optimize ranging 
accuracy by selecting a number of frequencies within a sparse 
bandwidth rather than occupying continuous frequency 

spectrums. Furthermore, by optimizing array placement and 
adopting array processing algorithms, spatial diversity is 
introduced and unambiguous angle-of-arrival (AoA) can be 
retrieved to improve localization [13]–[15]. Nonlinear and non-
monotonic relationship between phase and range also causes 
location ambiguities, especially when the sensing devices are 
near the measured target under heavy multi-path [16]–[18]. 
Even if non-line-of-sight (NLoS) can be identified and filtered 
through AoA estimation [19], [20], near-field propagation 
exhibits nonlinear and non-monotonic phase-range relationship, 
degrading the localization accuracy of range-based approaches. 
Therefore, near-field localization methods are usually based on 
dedicated signal models and avoid range-based trilateration 
[16], [21]. 

In this paper, we propose a novel phase-based localization 
method that exploits spatial diversity to remove ambiguity from 
near-field nonlinearity. First, reference tag locations are 
selected, where differential phases for multiple receiver (Rx) 
pairs for a shared transmitter (Tx) are measured and calibrated. 
These relational functions with respect to differential distances 
from the tag to each pair of Rx antennas are then employed to 
determine differential distances given differential phases for an 
unknown tag location. Such functions can be nonlinear and non-
monotonic due to near-field propagation and multi-path, 
producing multiple ambiguous distances for one differential 
phase and leading to ambiguous tag locations. An algorithm was 
devised to remove the nonlinearity ambiguity, where redundant 
channel resources from spatially diverse Rx antennas were 
exploited. We prototyped a millimeter-level 3D localization 
system by the harmonic backscatter RFID tag and universal 
software radio peripheral (USRP) devices. Ambiguity due to 
phase rotation over multiple wavelengths can be another 
concern, though with many available solutions in the literature 
[5], [22]. Due to length limitation and the present small-scale 
setup of the building-material prototype, complete integration 
with wavelength ambiguity resolution will be treated in the 
future for an extended large-scale setup. 

II. PRECISION 3D TAG LOCALIZATION IN SMALL VOLUME 

First, we introduce the complete 3D localization workflow 
which includes reference tag calibration and non-reference tag 
localization. Next, we describe the iterative polynomial fitting 
and optimization algorithm for the phase-distance function 
during reference tag calibration. Then, the voxel tree parsing 
algorithm is introduced for non-reference tag localization. 



Finally, we propose the ambiguity-free tag localization 
algorithm, which exploits channel redundancy associated with 
spatially diverse Rx antennas.  

A. 3D Localization Workflow 

The workflow for tag 3D localization includes the reference 
tag calibration and non-reference tag localization, as shown in 
Figs. 1(a) and (b), respectively. Within the small capture 
volume, several tags were selected as reference locations, for 
which differential phases of backscattered signals were 
measured and calibrated. Differential phase varied with the 
corresponding differential distance from the tag to the two 
associated Rx antennas, and their functional relationship was 
obtained and improved through iterative polynomial fitting. This 
will be discussed in detail in Sec. II.B. 

Then, for a non-reference tag with unknown location, the 
associated differential distances with given differential phases 
for each Rx pair can be extracted from the optimized polynomial 
functions in the previous calibration step. Combining the 
differential distances from multiple Rx pairs, we evaluated the 
3D tag location by searching for the intersection point of 
multiple hyperboloid surfaces with the voxel tree parsing 
algorithm in Sec. II.C.  

However, the optimized phase-distance functions can be 
nonlinear and non-monotonic, introducing multiple differential 
distance candidates for a single differential phase. As a result, 
there can be multiple ambiguous tag 3D locations. We removed 
such ambiguity by leveraging redundant channel resources from 
spatially diverse Rx antennas, as described in Sec. II.D.  

B. Reference Tag Calibration 

Suppose there were 1 Tx and 𝑀 Rx antennas with known 
locations, and we selected 𝑁 reference tag locations for which 
the differential phase for each Rx pair was measured. The 
differential phase and distance were employed to eliminate the 
dependence on absolute phase values which can be random for 

different transceivers [23]. With the shared Tx, there were 
𝑀(𝑀 − 1)/2 different Rx pairs in total. The differential distance 
can be calculated as:  

𝑑𝑛,𝑘,𝑙 = |𝑟𝑛⃗⃗⃗  − 𝑅𝑘
⃗⃗ ⃗⃗  | − |𝑟𝑛⃗⃗⃗  − 𝑅𝑙

⃗⃗  ⃗| (1) 

where 𝑟𝑛⃗⃗  ⃗ , 𝑅𝑘
⃗⃗ ⃗⃗   and 𝑅𝑙

⃗⃗  ⃗  are the 𝑛 -th reference tag location and 
locations of the 𝑘-th and 𝑙-th Rx antennas, respectively, for 1 ≤
𝑛 ≤ 𝑁, and 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑀. For a given Rx pair, the 3rd-order 
polynomial function that fitted the set of measured differential 
phases {𝜙𝑛,𝑘,𝑙} and the set of differential distances {𝑑𝑛,𝑘,𝑙} for the 

𝑘-th and 𝑙-th Rx antenna pair can be expressed as: 

Φ𝑘,𝑙(𝑑𝑘,𝑙) = 𝑝0,𝑘,𝑙 (
𝑑𝑘,𝑙 − 𝜇𝑘,𝑙

𝜎𝑘,𝑙

)

3

 

+𝑝1,𝑘,𝑙 (
𝑑𝑘,𝑙 − 𝜇𝑘,𝑙

𝜎𝑘,𝑙

)

2

+ 𝑝2,𝑘,𝑙 (
𝑑𝑘,𝑙 − 𝜇𝑘,𝑙

𝜎𝑘,𝑙

) + 𝑝3,𝑘,𝑙  

(2) 

where 𝑑𝑘,𝑙  was the independent variable, and 𝑝0,𝑘,𝑙 , 𝑝1,𝑘,𝑙 , 𝑝2,𝑘,𝑙 

and 𝑝3,𝑘,𝑙  were constant coefficients determined by the least-

square polynomial fitting. For different Rx pairs we would get a 
different function Φ𝑘,𝑙(𝑑𝑘,𝑙) where 𝜇𝑘,𝑙  and 𝜎𝑘,𝑙  were the mean 

and standard deviation of the set {𝑑𝑛,𝑘,𝑙} for given 𝑘 and 𝑙. To 

avoid inverting an ill-conditioned Vandermonde matrix to get a 
more reliable fit, the samples {𝑑𝑛,𝑘,𝑙} are centered around their 

mean 𝜇𝑘,𝑙  and normalized by their standard deviation 𝜎𝑘,𝑙 

before the polynomial fitting procedure [24], [25].  

The reference tags and Rx antenna locations were measured 
from the antenna physical centers, which might be inaccurate 
due to antenna detuning through mutual coupling. To further 
improve the polynomial fitting, optimization was performed 
with respect to the reference tag and Rx antenna locations. The 
objective function was defined as:  

𝑓(𝑟𝑛⃗⃗⃗  , 𝑅𝑘
⃗⃗ ⃗⃗  , 𝑅𝑙

⃗⃗  ⃗) = ∑∑|Φ𝑘,𝑙(𝑑𝑛,𝑘,𝑙) − 𝜙𝑛,𝑘,𝑙|
2

𝑛𝑘,𝑙

 

argmin
𝑟𝑛⃗⃗⃗⃗ ,𝑅𝑘⃗⃗⃗⃗  ⃗,𝑅𝑙⃗⃗⃗⃗ 

𝑓(𝑟𝑛⃗⃗⃗  , 𝑅𝑘
⃗⃗ ⃗⃗  , 𝑅𝑙

⃗⃗  ⃗) 

(3) 

where Φ𝑘,𝑙(𝑑𝑛,𝑘,𝑙)  was the differential phase predicted by the 

polynomial function at 𝑑𝑛,𝑘,𝑙  using Eq. (2), and 𝜙𝑛,𝑘,𝑙  was the 

measured differential phase associated with the 𝑛-th reference 
tag location for the pair of the 𝑘-th and 𝑙-th Rx antennas. The 
objective function combined the phase prediction errors from all 
Rx-pair and reference tag locations, and the best locations of the 
reference tags and Rx antennas were determined by minimizing 
the objective function. Coefficients 𝑝0,𝑘,𝑙 , 𝑝1,𝑘,𝑙 , 𝑝2,𝑘,𝑙  and 𝑝3,𝑘,𝑙 

for each Rx pair were constant during optimization by Eq. (3). 
We adopted the line search optimization for the objective 
function, and implemented the steepest descent algorithm with 
the strong Wolfe conditions [26]. Then, the updated locations 𝑟𝑛⃗⃗  ⃗, 

𝑅𝑘
⃗⃗ ⃗⃗   and 𝑅𝑙

⃗⃗  ⃗ were plugged back to Eq. (1) to calculate the updated 
differential distances. Polynomial fitting in Eq. (2) was 
performed again for the updated locations and iterated with 
optimization by Eq. (3). This iterative fitting and optimization 
routine gradually reduced the fitting errors by the polynomial 
functions Φ𝑗,𝑘(𝑑𝑗,𝑘) for all 𝑗 and 𝑘.  

The optimized polynomial functions would be employed to 
extract differential distances for non-reference 3D tag 

 
Fig. 1. Localization workflow. (a) Reference tag calibration. (b) Non-

reference tag localization. 
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localization. The optimized curves for 6 Rx pairs associated with 
4 Rx antennas were shown in Fig. 2. It is observed that for Rx 
pairs in Figs. 2(a)(d)(e), curves were non-monotonic such that 
for certain differential phases, more than one differential 
distances can exist, as shown by the intersection with the black 
horizontal dashed lines. This produced ambiguous tag locations 
to be resolved by channel redundancy, as discussed in Sec. II.D.   

C. Voxel Tree Parsing Algorithm 

 For each Rx pair, the tag location is on a hyperbolical 
surface which has constant differential distance from the foci, 
i.e., two Rx antennas. Fig. 3(b) shows the two-sheet hyperbolic 
surface, where a tag location resides on one sheet given the 
differential distance of an Rx pair. Thus, we need to know the 
intersection of hyperboloid surfaces associated with each Rx 
pair to identify the tag location. For this work, we selected 4 Rx 
pairs to obtain 1 tag location at the surface intersection. Fig. 3(a) 
shows the top-level flow chart for the voxel tree parsing 
algorithm that searches for the voxel corresponding to the tag 
location. The algorithm details are laid out in Algorithm I, as 
shown below. The exponential reduction in the oct-tree voxel 
can be readily integrated with the wavelength ambiguity 
resolution method if necessary.  

Algorithm I 

Initialize parameters: 

- Differential distances: 𝑑𝑘,𝑙 (1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑀). 

- Rx antenna locations: 𝑅𝑚
⃗⃗⃗⃗⃗⃗  (1 ≤ 𝑚 ≤ 𝑀) 1. 

 
1 For an Rx pair, we denoted “the 𝑘-th and 𝑙-th Rx antennas”, with 1 ≤ 𝑘 ≠
𝑙 ≤ 𝑀. Here, we denote Rx antennas individually, hence use the index 𝑚 with 

- Reference tag locations: 𝑟𝑛⃗⃗  ⃗ (1 ≤ 𝑛 ≤ 𝑁). 

- Capture volume: 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥. 

- Number of voxels in each dimension: 𝑁𝑋, 𝑁𝑌, 𝑁𝑍. 

- Capture colume reduction factor after each iteration: 𝜌𝐶𝑎𝑝𝑉𝑜𝑙. 

Define the capture volume and voxels: 

- Divide the capture volume spanning 𝑥 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥], 𝑦 ∈
[ 𝑌𝑚𝑖𝑛 , 𝑌𝑚𝑎𝑥], and 𝑧 ∈ [𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥] equally into 𝑁𝑋 , 𝑁𝑌 , and 

𝑁𝑍  segments, respectively, thus totally 𝑁𝑋 ∙ 𝑁𝑌 ∙ 𝑁𝑍  voxels of 

equal sizes. 

- Record voxel locations 𝑎𝑝⃗⃗⃗⃗ = (𝑥𝑝, 𝑦𝑝 , 𝑧𝑝) (1 ≤ 𝑝 ≤ 𝑁𝑋 ∙ 𝑁𝑌 ∙

𝑁𝑍). 

- Calculate differential distances for each voxel and Rx pair, 

i.e.,  𝑑(𝑎𝑝⃗⃗⃗⃗ , 𝑅𝑘
⃗⃗ ⃗⃗  , 𝑅𝑙

⃗⃗  ⃗) = |𝑎𝑝⃗⃗⃗⃗ − 𝑅𝑘
⃗⃗ ⃗⃗  | − |𝑎𝑝⃗⃗⃗⃗ − 𝑅𝑙

⃗⃗  ⃗| (1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑀). 

In 𝑵𝑴𝒂𝒙𝑰𝒕𝒆𝒓 iterations: 

1) For each voxel, calculate 𝑔(𝑎𝑝⃗⃗⃗⃗ ) = ∑ |𝑑(𝑎𝑝⃗⃗⃗⃗ , 𝑅𝑘
⃗⃗ ⃗⃗  , 𝑅𝑙

⃗⃗  ⃗) −𝑘,𝑙

𝑑𝑘,𝑙| . Define 𝒂⃗⃗ ̂ = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒂𝒑⃗⃗ ⃗⃗  

𝒈(𝒂𝒑⃗⃗ ⃗⃗  )  as the tag location 

candidate. 

2) Exit if this is the 𝑁𝑀𝑎𝑥𝐼𝑡𝑒𝑟 -th iteration, otherwise 

continue. 

3) Define a new capture volume centered around 𝒂⃗⃗ ̂ with 

reduced volume size by 𝜌𝐶𝑎𝑝𝑉𝑜𝑙 in every dimension. 

4) Divide the new capture volume into 𝑁𝑋 ∙ 𝑁𝑌 ∙ 𝑁𝑍 voxels 

of equal sizes, and update voxel locations 𝑎𝑝⃗⃗⃗⃗ =

(𝑥𝑝, 𝑦𝑝, 𝑧𝑝). 

5) Calculate differential distances for each voxel and Rx 

pair, i.e., 𝑑(𝑎𝑝⃗⃗⃗⃗ , 𝑅𝑘
⃗⃗ ⃗⃗  , 𝑅𝑙

⃗⃗  ⃗) = |𝑎𝑝⃗⃗⃗⃗ − 𝑅𝑘
⃗⃗ ⃗⃗  | − |𝑎𝑝⃗⃗⃗⃗ − 𝑅𝑙

⃗⃗  ⃗|. 

Output the tag location 𝒂⃗⃗ ̂. 

Fig. 3(c) visualizes the exponential capture volume 
reduction of the voxel tree parsing algorithm, which refines the 
resolution during each iteration.  

D. Ambiguity-Free Tag Localization 

Notice that for 𝑀 = 4 Rx antennas, there are 𝑀(𝑀 − 1)/2 =
6 Rx pairs, and as 𝑀 increases the number of Rx pairs increases 
quadratically. Thus, for 𝑀 ≥ 4, there are always redundant Rx 
pairs. We propose a novel ambiguity-free tag localization 
algorithm which leverages redundant channels to remove tag 

1 ≤ 𝑚 ≤ 𝑀, and the 𝑚-th Rx antenna’s location is denoted by  𝑅𝑚
⃗⃗ ⃗⃗  ⃗. Otherwise, 

there is no difference in the sense that 𝑘, 𝑙, and 𝑚 all represent antenna indices.  

  
Fig. 2. (a-f) Polynomial curves for differential phases vs. differential 

distances after iterative fitting and optimization for each Rx pair. 
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Fig. 3. (a) The voxel tree parsing algorithm. (b) A two-sheet hyperbolic 
surface. (c) Exponential reduction of the capture volume and voxel size in 

the voxel-tree parsing algorithm. 
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location ambiguity due to the non-monotonic polynomial 
functions. Taking 𝑀 = 4  as an example, we have  (6

4
) = 15 

different selections of 4 out of 6 Rx pairs. For each selection, 
suppose the 𝑠 -th Rx pair produces 𝑁𝑠  ambiguous differential 
distances, so there are ∏ 𝑁𝑠

4
𝑠=1  combinations of 4 differential 

distances in total, hence ∏ 𝑁𝑠
4
𝑠=1  ambiguous tag locations. Each 

selection of 4 Rx pairs produces a different set of ambiguous tag 
locations, and if Rx antennas are deployed with spatial diversity, 
the true tag location corresponds to the intersection of sets of tag 
locations produced by all selections of 4 Rx pairs. Fig. 4(a) 
shows the top-level flow chart for the ambiguity-free tag 
localization algorithm. Fig. 4(b) visualizes the intersection of tag 
location sets, with dots of the same color representing tag 
locations from the same selection of 4 Rx pairs. The algorithm 
is described in detail as shown in Algorithm II below.  

Algorithm II 

Initialize parameters: 

- Number of different selections of 4 Rx pairs: 𝐼 . ( 𝐼 ≤

(𝑀(𝑀−1)/2
4

)) 

- The neighborhood search radius for clustering: 𝜀. 

- Minimum number of points to form a cluster: 𝑁𝑚𝑖𝑛𝑝𝑡𝑠. 

 
2 With ambiguity due to non-monotonic phase-distance function, some Rx pairs 

will give 𝑁𝑠,𝑖 > 1. If 𝑁𝑠,𝑖 = 1 for all 𝑠 and 𝑖, the ambiguity-free tag localization 

For the 𝒊-th iteration (𝟏 ≤ 𝒊 ≤ 𝑰): 

1) Pick 1 set of 4 Rx pairs that has not been selected in 

previous iterations.  

2) For the 𝑠 -th Rx pair with 1 ≤ 𝑠 ≤ 4 , obtain 𝑵𝒔,𝒊 

ambiguous differential distances.2  

3) List all 𝑱𝒊 = ∏ 𝑵𝒔,𝒊
𝟒
𝒔=𝟏  combinations of 4 differential 

distances from the 4 Rx pairs.  

4) Apply Algorithm I to each combination in 3) to get the 

set of 𝐽𝑖 ambiguous tag locations, i.e., {𝑎 𝑗}𝑖
. (1 ≤ 𝑗 ≤ 𝐽𝑖) 

Cluster all tag locations from sets {𝒂⃗⃗ 𝒋}𝒊
. 

Find the cluster that contains one tag location from each set 

{𝒂⃗⃗ 𝒋}𝒊
 for 𝟏 ≤ 𝒊 ≤ 𝑰 , and output the geometric center of this 

cluster. 

In this work, we heuristically selected 𝐼 = 3. Due to phase 
noises, the correct tag location candidates from each selection of 
Rx pairs were not at the exact same location, but instead were 
close to each other. Thus, Algorithm II found such an 
“intersection” by spatial clustering. The density-based spatial 
clustering of applications with noise (DBSCAN) algorithm was 
adopted [27], for which the parameters of the search radius 𝜀 and 
the minimal number of points to form a cluster 𝑁𝑚𝑖𝑛𝑝𝑡𝑠  were 

initialized at the beginning. Figs. 4(c-e) provides 3 examples of 
spatial clustering of tag location sets, each with 𝐼 = 3 sets of 

algorithm is no longer needed. In this case, Algorithm II degenerates into 
Algorithm I with proper modifications. 

 
Fig. 4. (a) The ambiguity-free tag localization algorithm. (b) 

Visualization of Algorithm II. (c-e) 3 experimental examples of valid 

clusters corresponding to the intersection of sets of tag locations from 

different subsets of Rx pairs. 
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Fig. 5. Universal software radio peripheral (USRP) B210 devices and 

global positioning system disciplined oscillator (GPSDO). (b) A patch 
antenna operating around 900 MHz. (c) A whip antenna in the 1.8 GHz 

band. (d) A harmonic RFID tag. (e) The wireless setup for tag localization 

that consists of 1 Tx antenna and 4 Rx antennas, in a heavy multi-path 

channel by a concrete brick. 
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ambiguous tag locations from 4 Rx pairs, represented in red, 
blue and green dots, respectively. A valid cluster that 
corresponds to the true tag location is one that incorporates one 
dot of each color, marked out by yellow circles. Closely spaced 
tag locations in the yellow circles proves the effectiveness of the 
proposed ambiguity-free algorithm. When there are only 4 Rx 
pairs, ambiguity cannot be removed without prior knowledge, 
indicated by dots of the same color in Figs. 4(c-e). Therefore, 
spatial diversity is a critical prerequisite to remove ambiguity 
with confidence.  

III. EXPERIMENTAL VALIDATION 

A. Experimental Setup 

 We established an experimental setup for tag localization. 
Two National Instruments (NI) USRP Ettus B210 (Ettus 
Research, Austin, TX) devices were used, and synchronized 
with a global positioning system disciplined oscillator 
(GPSDO), as shown in Fig. 5(a). A patch antenna (Taoglas 
ISPC.91A with around 5 dBi gain at 900 MHz) was used as the 
Tx antenna as shown in Fig. 5(b). Four whip antennas (Siretta 
Delta 14 with around 1 dBi gain at 1.8 GHz) in Fig. 5(c) were 
used as Rx antennas. A harmonic backscattering RFID tag in 
Fig. 5(d) was used for localization [28]. Tag localization was 
performed in a heavy multi-path channel of 1 Tx antenna and 4 
Rx antennas, implemented by a concrete brick to represent 
building materials, as shown in Fig. 5(e). During experiments, 
the tag was carried by a stepping motor with 1.25 µm stepping 
precision, and the linear trail was adjusted in both horizontal 
displacement and tilt orientation to test various spatially diverse 
tag 3D locations, as shown in Fig. 6(a).  

B. Localization and Phase Noises 

For each linear trip of the stepping motor, the motor stopped 
at 0.5 mm intervals to collect differential phase measurements, 
over a 40 mm trail. Multiple trips were taken with different 
horizontal and tilt orientations of the stepping motor, and around 
5% of tag locations were selected as reference locations. We 
performed reference tag calibration and non-reference tag 
localization as introduced in Sec. II. In Fig. 6(b) the scatter plot 
included the ground truth locations by the stepping motor and 
the calculated tag locations by the localization algorithm, for 
both reference and non-reference tags, over 3 stepping motor 
trips with tilt angles of 0°, 1.3° and 2.7°, respectively. As 
expected, yellow and green dots matched well as they 
correspond to the reference tag locations. Red and blue dots 
represented the ground truth locations and calculated locations 
for non-reference tags, respectively. The cumulative distribution 
function (CDF) of the localization error over all 3 trips in Fig. 
6(b) was shown in Fig. 6(c), which verified the millimeter-level 
accuracy.  

To study the phase noise distributions, we calculated the 
empirical probability distribution functions (PDF) of the 
differential phases of various Rx pairs, using a Gaussian 
smoothing kernel [29]. Fig. 7 shows the examples of four Rx 
pairs. The location of Rx antennas will affect the phase variance 
due to signal propagation losses in the wireless channel, but for 
all measured channels, the empirical PDFs are nearly Gaussian. 
This justifies the use of the sample mean values to represent 
differential phases for each Rx pair during least-square fitting 

and optimization in Eqs. (2) and (3). When no further 
information about the distribution can be implied, Gaussian 
distribution has the maximum entropy among all distributions 
with the same variance [30].  

IV. CONCLUSION 

 In this paper, we propose a novel phase-based tag 
localization algorithm that removes ambiguity due to nonlinear 
and non-monotonic phase-distance functions in the near field, 
which leverages channel redundancy in spatially diverse Rx 
antennas. The iterative fitting and optimization algorithm for 
reference tag calibration and the voxel tree parsing algorithm for 
non-reference tag localization are introduced. Millimeter-level 
3D localization accuracy was achieved in a setup of 1 Tx and 4 
Rx. For future work, the current setup can be extended for 
multiple Tx and Rx antennas, by using multiplexing techniques 

 
Fig. 6. (a) The stepping motor carrying the harmonic tag during 
experiments, whose horizontal displacement and tilt orientation were 

adjusted for multiple experiments. (b) The scatter plot of Rx antenna 

locations, together with ground truth locations and calculated tag locations 
for both reference and non-rerference tags, for three 40-mm stepping 

motor trips with 0.5 mm steps. (c) The cumulative distribution function 

(CDF) of localization errors for non-reference tag locations of all three 

stepping motor trips in (b). 
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like frequency-division multiple access (FDMA) or code-
division multiple access (CDMA) over multiple Tx.  
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Fig. 7. (a-d) The empirical probability distribution functions (PDF) of 

differential phase measurements from four Rx pairs, and the correspoding 

Gaussian distributions with the same means and variances.  
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